
DESCRIPITION OF PRODUCTS

产品说明

--V1.0

T20S 短信/GPRS 信道-天线 PLC

0218EE

www.T50rtu.com

北京捷麦顺驰科技有限公司

T50rtu@sina.com

目 录

1.	概〕	述		5
	1.1	拮	走麦 PLC 概述	5
	1.2	Ē	品系列介绍	5
	1.3	T20	os 产品概述	8
2.	外交	观尺	寸及指标	<u>c</u>
	2.1	5	外观及说明	<u>S</u>
	2.2	P	内部等效逻辑图	<u>S</u>
	2.3	站	端子接口说明	10
	2.4	LED) 指示灯	10
	2.5	ŧ	支术指标	11
	2.6	7	安装方法	12
	2.7	SIM	1卡安装	12
3.	10	口功	能	12
	3.1	牛	寺性	12
	3.2	有	输入接线示意图	13
	3.3	有	俞出接线说明	13
	3.4	10 4	输入档位选择	14
	3.5		上电初始输出状态	15
	3.6	Ú	虑波参数设置	16
	3.	6.1	数字量滤波器	16
	3.	6.2	模拟量滤波器	18
	3.7	IO I	口的采集与控制	19
4.	用力	户编和	程	19
	4.1	割	扁程连接	20
	4.2	PLC	:编程软件开发环境	21

	4.3	梯形图/STL 编程	22
	4.3.1	主界面	22
	4.3.2	编程资源	22
	4.4 C	语言编程	23
	4.4.1	主界面	23
	4.4.2	编程资源	2 3
5.	通信		25
	5.1	串口通信	25
	5.1.1	收发数据	25
	5.1.2	参数及设置	26
	5.1.3	串口电平转换	27
	5.2 G	PRS 通信	30
	5.2.1	通信模型	30
	5.2.2	收发数据	31
	5.2.3	参数及设置	31
	5.3	短信通信	34
	5.3.1	收发数据	34
	5.3.2	参数及设置	35
6.	组建主	E从测控网络	35
	6.1	主从网的基本概念与架构	35
	6.2	主站的构成	37
	6.2.1	计算机做主站	37
	6.2.2	用户主站设备做主站	37
	6.2.3	PLC 做主站	38
	6.3 PI	LC 做分站	41
7.	组建主	E从测控网络	42
	7.1	主从网的基本概念与架构	42
	7.2	主站的构成	43
			2

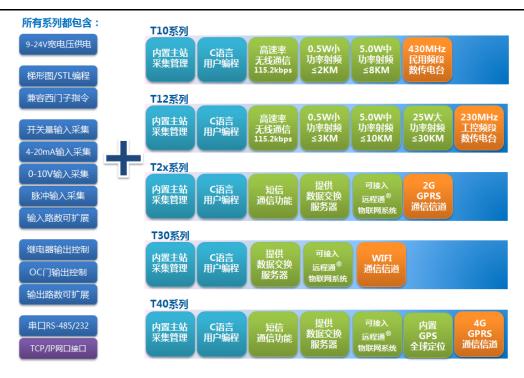
	7.2.1	计算机做主站	43
	7.2.2	用户主站设备做主站	44
	7.2.3	PLC 做主站	44
	7.3 Pl	LC 做分站	47
	7.4	工程实例	48
	7.4.1	项目需求	48
	7.4.2	方案选择	48
	7.4.3	参数设置	48
	7.4.4	程序设计	50
8.	附录		54
	8.1	相关文档及阅读指南	54
	8.2	版权声明	55
	8.3	免责声明	55
	8.4	技术支持	55
	8.5	变更历程	56

网址: http://www.t50rtu.com

1. 概述

1.1 捷麦 PLC 概述

捷麦无线 PLC 专用于远程测控系统。具有常规 PLC 在输入输出 IO 的特性(自带多路开关量/模拟量/输入采集通道、多路继电器/OC 门输出通道及 IO 路数可扩展);编程语言除支持梯形图和 STL 语言外,还支持 C 语言;通信方式上除串口 RS-485\RS-232\TTL\TCP/IP 网口外,有具备 4G/2G/短信/WIFI/数传电台等无线通信能力。


无线 PLC 在常规 PLC 特点和性能的基础上针对远程测控做了优化:硬件上除具备传统 PLC 的输入采集、输出控制、定时器和串口通信等功能外,还增加了无线通信功能,在软件上除具备传统 PLC 的读输入、执行程序、处理通信请求、执行 CPU 自诊断和写输出这五个扫描周期过程外,还增加了信道管理、驱动管理、采集管理和应用管理等远程测控组网功能。

无线PLC与传统PLC相比最大的优势:无需外接无线通信模块和编写通信接口驱动程序等工作, 就可以直接构建远程测量系统、远程控制系统和远程报警系统等远程测控方案。

1.2 产品系列介绍

全系列产品的 IO 通道接口定义及用户程序框架的高度兼容,您可以在不必修改原始主从测控系统的主从硬件分布,IO 通道接线位置等硬件变动,及少量修改软件(信道名称替换)的条件下,将您的测控系统更换到其他的无线信道上,例如由以前的无线数传通信切换至 4G 的 GPRS 通信。

产品选型表

T 系列无线 PLC 产品列表(截至 2017 年 4 月)									
輸入采集		入采集	输出控制 编程		睈	有线通信接口			
型号	开关量脉冲	复用通道 (三种档位可选 0-20mA、 0-10V、 开关量脉冲)	继电器	ວo ຕໍ	梯形图 STL	C 语言	串口 (可兼容 RS-485、 RS-232 和 TTL 电平)	⊠□	无线信道
T10L	1	3	0	2	√	√	√	√	0.5W,433M 电台
T10M	1	3	0	2	√	√	√	√	5.0W,433M 电台
T12L	1	3	0	2	√	√	V	√	0.5W,230M 电台
T12M	1	3	0	2	√	√	V	√	5.0W,230M 电台
T12H	1	3	0	2	√	√	√	√	23W,230M 电台
T20S	1	3	0	2	√	√	V	V	2G-GPRS/短信 G300 协议
T20Y	1	3	0	2	√	√	√	√	2G-GPRS/短信 远程通 [®] 协议
T25S	0	8	4	0	√	√	V	√	2G-GPRS/短信 G300 协议
T25Y	0	8	4	0	√	√	V	V	2G-GPRS/短信 远程通®协议
T30W	1	0	0	0	√	√	√	√	WIFI 信道
T30N	1	0	0	0	√	√	√	√	-
T32N	4	4	4	0	√	√	√	√①	-

北京捷麦顺驰科技有限公司 地址:北京市丰

电传: (010) 58076471/2/3

地址:北京市丰台区芳城园一区日月天地 B座 1505

网址: http://www.t50rtu.com

6

	T 系列无线 PLC 产品列表(截至 2017 年 4 月)								
	输入采集		输出控制 编程		有线通信接口				
型号	开关量 脉冲	复用通道 (三种档位可选 0-20mA、 0-10V、 开关量脉冲)	继电器	OC Ü	梯形图 STL	C 语言	串口 (可兼容 RS-485、 RS-232 和 TTL 电平)	网口	无线信道
T32U	4	4	4	0	√	√	2	√	-
T33U	12	8	0	0	√	√	2	√	
T34U	0	0	10	0	√	√	2	√	
T35U	0	0	0	0	√	√	2	√	
T37U	20	0	0	0	√	√	2	√	
T40S	1	3	0	2	√	V	V	V	4G-GPRS/短信 /GPS-G300 协议
T40Y	1	3	0	2	√	√	V	√	2G-GPRS/短信 /GPS-远程通 [®] 协议

注①: 这个网口支持采集管理的主站信道功能,而其他的网口只能实现普通的信道收发数据功能。

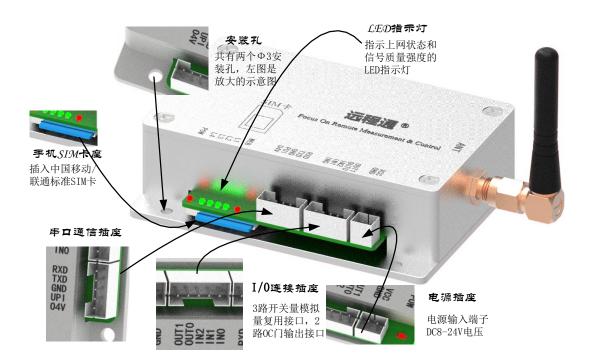
相关配件表

网址: http://www.t50rtu.com

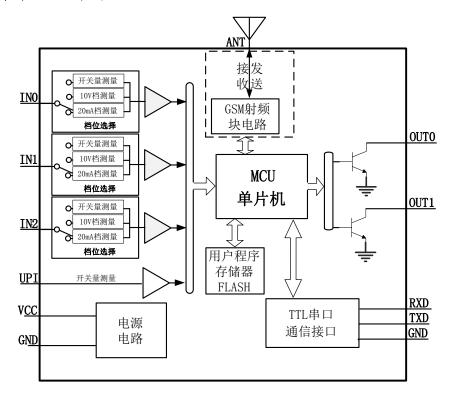
1.3 T20S 产品概述

T20S 是一款工业级远程测控专用的无线 PLC。可监测 4 路输入信号,控制 2 路 OC 门输出(输入输出可扩展);编程语言三种可选: 简易 C 语言、梯形图和 STL 语言;通信上具有有线通信接口(串口 RS-232、RS-485、TTL 电平和网口)GPRS 和短信三种通信信道。

T20S 无线 PLC 内部集成 MODBUS_RTU 设备协议和 JammyBus 分站协议的协议解析器;同时,T20S 内置主站采集管理功能,通过自身"有线串口/网口"、"GPRS"或"短信"可采集任何支持"MODBUS"和"JammyBus"协议的从站。


- 1、供电方式: DC8~24V宽电压供电。
- 2、<u>数据采集</u>: 3路开关量模拟量档位复用通道+1路开关量,复用档位可选:模拟量\开关量\计数量。其中模拟量可选电压0~10V和电流0~20mA档位。
- 3、输出控制: 2路OC门输出通道。
- 4、编程语言:可使用简易C语言、梯形图或STL三种编程语言进行用户逻辑编程
- 5、**通信信道:** 串口(TTL\RS-232\RS-485\网口), GPRS通信,短信通信。
- 6、服务器组建:GPRS支持自建服务器,自建服务器可与主站分离。
- 7、主备服务器:当GPRS主服务器网络发生故障时,可自动切换到备用服务器上。
- 8、长短信功能:具有长短信功能,一条短信可收发500字节。
- 9、 通信协议: 内置多种协议驱动,支持标准MODBUS协议,远程通信专用JammyBus协议。
- 10、<u>测控组网</u>: 计算机、用户主站和T20S都可以做主站采集远端分站,构建远程测控系统。任何组态软件等上位机或程序可以通过MODBUS协议,使用有线串口、GPRS或者短信方式采集T20S分站的IO输入输出状态。

8



2. 外观尺寸及指标

2.1 外观及说明

2.2 内部等效逻辑图

2.3 端子接口说明

T20S 共有两个五芯插座和 1 个两芯插座每芯的名称及各端定义见下表:

插座名称	端口号	端口名称	I/O	作用
山海 括成	1	VCC	输入	直流电源输入,DC8-24V,推荐使用 DC12V
电源插座	2	GND	输出	地
	1	OUT1	信号输出	三极管 OC 门输出通道 1
	2	OUT0	信号输出	三极管 OC 门输出通道 0
I/O 连接插座	3	IN2	信号输入	模拟量/开关量复用档位输入通道 2
	4	IN1	信号输入	模拟量/开关量复用档位输入通道 1
	5	IN0	信号输入	模拟量/开关量复用档位输入通道 0
	1	RXD	串口设备→T20S	串口接收
	2	TXD	串口设备→T20S	串口发送
串口通信插座	3	GND	地	地
	4	UPI	串口设备→T20S	开关量输入通道
	5	O4V	T20S→电平转换板/线	向电平转换板/线提供直流 4.2V

2.4 LED 指示灯

T20S 有六个 LED 灯。分别电源灯(POWER)、网络灯(NET)和信号质量指示灯。具体如下:

LED 灯名称	灯状态	含义
POWER	亮/闪烁	模块正在工作
POWER	灭	模块没有工作
	亮	可以收发数据
NET	灭	不可以收发数据
(L1~L4)	亮	当前网络信号质量指示,全亮为满格信号,2个 灯亮为两格信号
(== 21)	闪烁	正在收发数据中

2.5 技术指标

▶ 基本参数

电源输入: DC8~24V(推荐使用 DC12V 输出电流≥2A 开关电源)

工作电流: 待机电流: ≤0.06A (DC12V 时) 发射电流: ≤1.86A (DC12V 时)

工作温度: -30~+60℃

▶ 有线通信口

通信接口: TTL/RS-232/RS-485/RJ45 网口可选(订货时需告知)

串口速率: 1200~115200bp/s 可设

▶ 无线射频

通信方式: 短信 + GPRS

网络制式: 2G GSM 850/900/1800/1900MHz

2G CDMA 800MHz

通道模式: GPRS 主通道或主备通道

▶ 输入输出 IO

输入: 电压: 0~10V 电流: 0~20mA

开关量: <2.5V 为 "0"; >8.6V 为 "1" 计数: 频率≤10Hz

输出: 三极管 OC 门输出

▶ 用户编程参数

编程语言: C语言、梯形图和 STL

程序/变量容量: 9000byte

> 组网参数

分站采集协议: MODBUS_RTU 和 JammyBus

主站采集管理功能: 支持

▶ 其他参数

重量: 150g

安装方式: M3 螺钉固定

机械尺寸: 82*mm 55.5mm*22.9mm (长*宽*高)

11

2.6 安装方法

本机的底板有 2 个安装螺孔,尺寸为 M3。可用螺丝直接安装在用户机箱内,安装尺寸和示意如下:

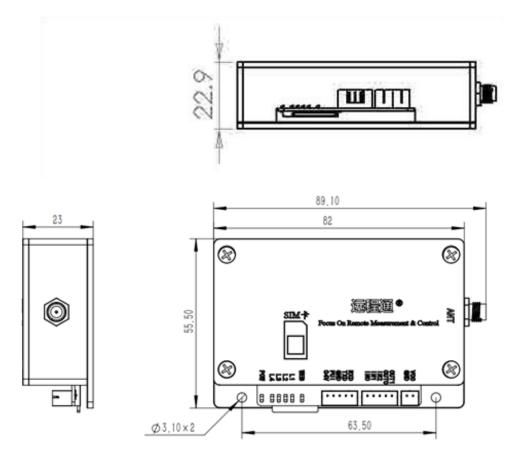


图 2-1T20S 外观尺寸及安装示意图

2.7 SIM 卡安装

安装时将 SIM 卡的电极面上, SIM 卡的缺口朝向模块内将卡插入模块, 如果 SIM 卡没有插到位, 就会自己弹出一定距离。插好 SIM 卡后, 卡的边缘与外壳几乎平齐, 并自动锁住不被弹出。取出 SIM 卡时要先向内按, 松手后 SIM 卡也会自动弹出一定距离, 然后再将 SIM 卡拔出。

注意:插拔 SIM 卡时请先将电源断开。以免损坏无线 PLC 和 SIM 卡。

3. IO 口功能

3.1 特性

PLC 集成了 3 路档位复用的测量通道(AI0~AI2),可以测量开关量、计数量、电压 0~10V 和电流 0~20mA。另外还有 1 路(UPI)是单独(不可复用)的开关量输入通道。参数如下表所示:

表 3-1 测量档位参数表

12

输入信号档位	测量范围	输入点数	輸入阻抗 (Ω)	精度	备注
复用开关量	<2.8V 为 "0"	2	4.717		输入的电压不得超过 24V,
(IN0~IN2)	>8.5V 为 "1"	3 4.7K		-	否则会损坏硬件
独立开关量	<0.4V 为 "0"	1			输入的电压不得超过 24V,
(UPI)	>0.8V 为"1"	1	-		否则会损坏硬件
电压 0~10V	0~10V	8	185K	$\pm 0.02V$	输入的电压不得超过 12V,
(IN0~IN2)	0~10 V	8			否则会损坏硬件
电流 0~20Ma	0. 20 4	8	125	±0.04mA	输入的电流不得超过 40mA,
(IN0~IN2)	0~20mA	8			否则会损坏硬件
B.シンセンエ 米ケ	410H-	0	4.7W		输入的电压不得超过 10V,
脉冲计数	<10Hz	8	4.7K	-	否则会损坏硬件

表 3-2 输出特性表

输出类型	输入点数	输出特性	备注	
三极管 OC 门	2	三极管集电极开路输出	最大电流输出 150mA	
(OUT0\OUT1)	2	二似旨未电似月 时制山	取入电机制出 130mA	

3.2 输入接线示意图

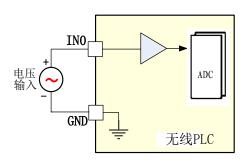


图 3-1 电压档接线图

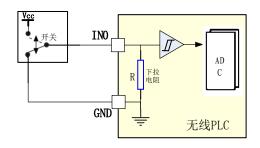


图 3-3 开关量档接线图

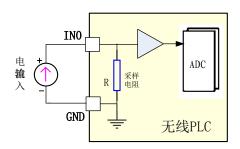


图 3-2 电流档接线图

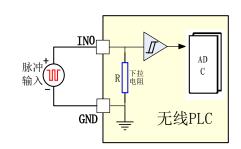


图 3-4 计数档接线图

3.3 输出接线说明

OC 门输出

PLC 输出逻辑 1 时晶体管导通, 当 PLC 输出逻辑 0 时晶体管截止(不导通)。

如果使用 PLC 控制一个电流小于 150 毫安的负载时(例如一个发光二极管)电路如下图:

13

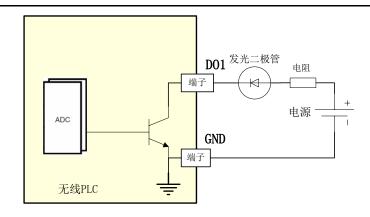


图 3-5 输出接小负载接线图

如果控制一个大电流或交流电负载,就得用一个扩展电流的继电器,连接电路如下:

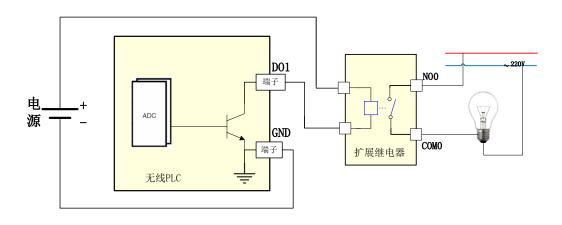


图 3-6 输出接大负载接线图

3.4 IO 输入档位选择

PLC 集成了多路路档位复用的测量通道,有开关量,模拟量,计数器三个通道类型。

您可以通过 PLC 编程软件选择输入信号的通道类型。IO 输入通道类型设置表的参数是配置文件的一部分,它被下载并储存在远程通中。点击工程操作数的配置文件—IO 口设置,弹出"IO 设置"对话框,如下图所示:

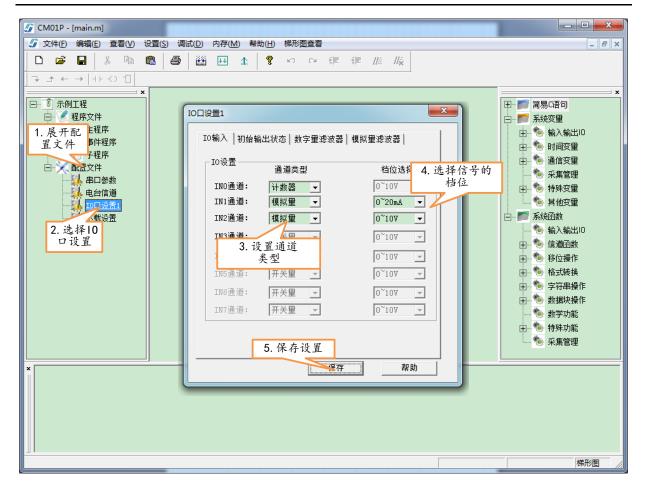


图 3-7 IO 输入档位设置

如果选择的通道类型是"模拟量",需要选择适合的档位,档位可选: 0~10V 和 0~20mA,,如果选择的通道类型是"开关量"或者"计数器",档位选择默认值为 0~10V,点击保存。

说明: 配置文件中对 PLC 硬件修改的任何参数,仅仅是在软件中做了修改,要让参数在硬件中生效,需要将配置文件下载到 PLC 中,可以修改多个参数后再一次下载。下文在修改配置文件操作描述时,省略"将改变后的系统文件文件下载到 PLC 中"的这一操作步骤。

3.5 上电初始输出状态

PLC 允许用户选择初始输出状态。初始输出状态表是系统文件的一部分,它被下载并储存在 PLC 中。点击左侧工程操作树的配置文件—IO 口设置,弹出"IO 设置"对话框,如下图所示: 勾选表示吸合/导通, 默认两个通道都不勾选, 即默认的上电初始化输出状态为不"吸合/导通"状态。

15

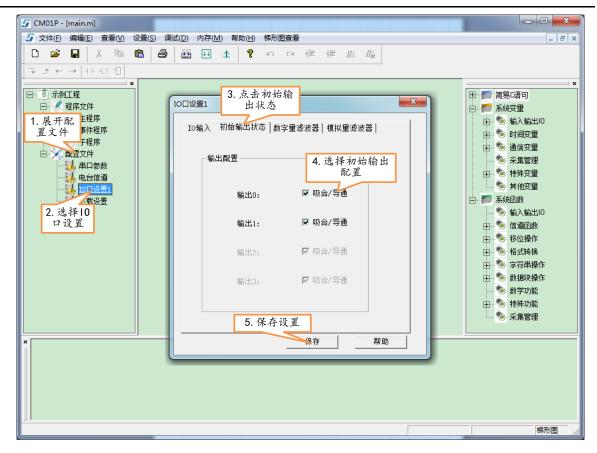


图 3-8 初始输出状态设置操作图

3.6 滤波参数设置

3.6.1 数字量滤波器

无线 PLC 允许您为某些或全部开关量输入点选择一个定义时延(可从 2 毫秒至 256 毫秒之间选择)的输入滤波器。该延迟帮助过滤输入接线上可能对输入状态造成不良改动的噪音。

通过设置输入时延,您可以过滤数字量输入信号。输入状态改变时,输入必须在时延期限内保持在新状态,才能被认为有效。滤波器会消除噪音脉冲,并强制输入线在数据被接受之前必须先稳定下来。默认滤波器时间是8毫秒。

选择 工程树>配件文件> IO 口设置 , 点击树中的"IO 口设置" 图标或者文中内容。在弹出的 IO 口设置对话框中选择"数字量滤波器"栏, 然后输入您需要设定的滤波值。

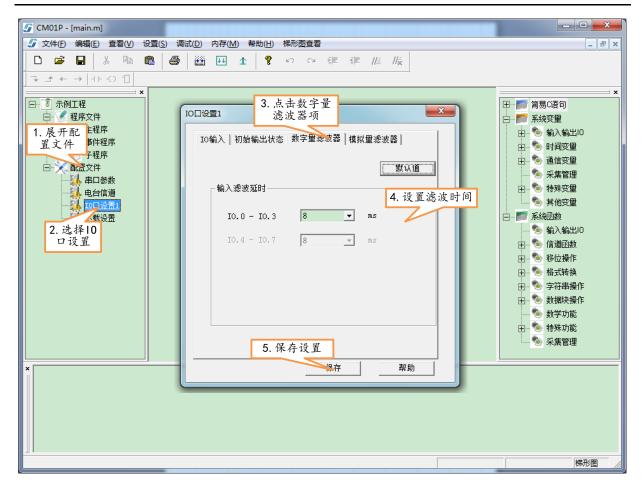


图 3-9 数字量滤波设置

3.6.2 模拟量滤波器

您可以为单个模拟量输入通道选择软件滤波。滤波后的数值是预先选择的模拟量输入采样数目的 平均值。滤波器规格(采样数和死区值)对所有启用过滤功能的模拟量输入均相同。

滤波器具有快速响应功能,允许滤波数值快速反映出较大的输入变化。当输入距离平均值的变化超过了指定的变化范围时,滤波器就直接把模拟量输入值跨步改变到实际的新值。这一变化范围称为死区,用模拟量输入数字量值计数表示。默认模拟滤波器参数:采样数 64;死区值 320 通道;通道全部开启时间。

选择 工程树>配件文件> IO 口设置 , 点击树中的"IO 口设置" 图标或者文中内容。在弹出的 IO 口设置对话框中选择"模拟量滤波器"栏, 然后输入您需要设定的滤波值。如下图所示:

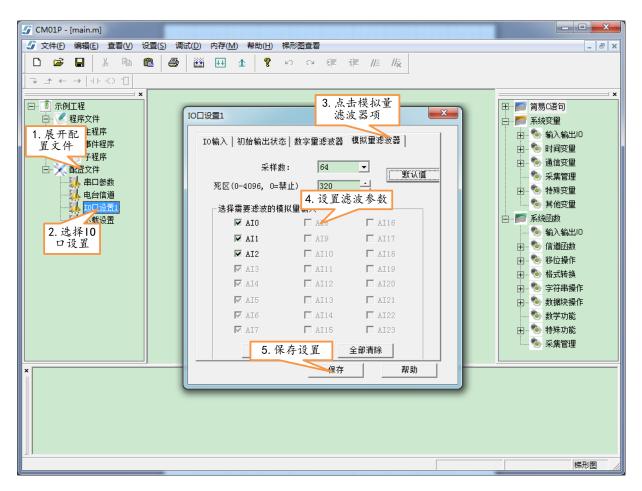


图 3-10 模拟量滤波设置

3.7 IO 口的采集与控制

PLC 定期地采集这些 IO 输入口的监测状态,然后将值写入对应的系统变量/寄存器中(开关量为 S_IO[]/Ix.x、模拟量为 S_AI[]/FAIx、计数档为 S_CUT[]/HCx),您在编程中,只需要读取这些变量的值就可以获取当前 IO 输入口的状态。

PLC 将输出通道的状态与系统变量 S_OUT[]/Qx.x ——对应,您在编程中,如果需要进行控制这些 OC 门/继电器输出状态,只需要对这些系统变量赋值就可以控制 OC/继电器的状态,当然,也可以通过读取这些系统变量的值读取当前 OC 门/继电器的输出状态。

C语言 梯形图 说明 名称 类型 寄存器 变量 开关量的输入状态, $S_IO[0]/I0.0$ 表示第 0 路 开关量 S_IO bit bit 型变量, 0表示低电平, 1表示高电平, Ix.x 输入 只读变量 输出状态映射, S_OUT [0]/Q0.0 表示第 0 路 开关量 S OUT bit 型变量, 0表示低电平, 1表示高电平, Ox.xbit 输出 读写变量 自身模拟量的值,与选择的档位配合,如果是电压档位,则为电压, 如果是电流档位,就是电流,同理温度档位表示的就是温度。 模拟量 S_AI **FAIx** float Float 型变量,例如电压档位,该值为3.6,就表示3.6V的电压 只读变量 自身计数器的档位值, 记录当前通道的脉冲计数值 计数档 S CUT **HC**x int int 型变量,超过65535后自动开始从0记录 只读变量

表 3-3 IO 系统变量清单

4. 用户编程

无线 PLC 支持用户通过 C语言、梯形图和 STL语言进行编程。

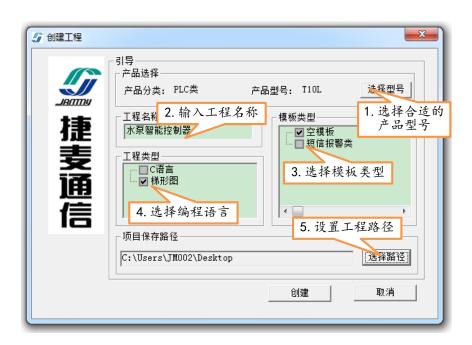
无线 PLC 开发环境 PLC 编程软件的使用说明见《PLC 编程软件开发环境使用手册》。

无线 PLC 的编程内容见《无线 PLC 用户编程手册-C 语言》和《无线 PLC 用户编程手册-梯形图》;下文仅仅介绍 T10L 无线 PLC 的编程基本情况。

4.1 编程连接

您可以通过"TTL 编程器"将无线 PLC 和您的编程设备(PC)连接,TTL 编程器的一头是 5P 插座接入 PLC 的串口(Uart)通信口,另外一头是标准 DB9 母头可接入电脑的 RS-232 串口。编程连接的实物图如下所示:

图 4-1 无线 PLC 与编程设备连续示意图

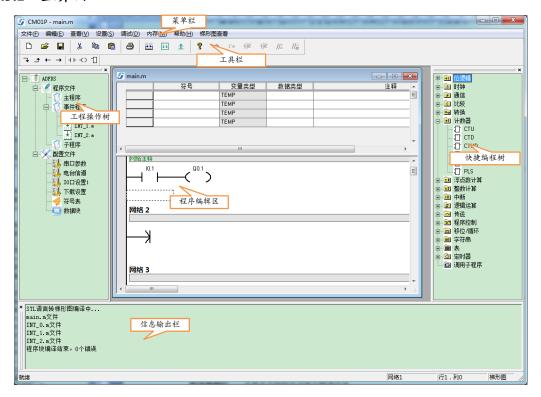

网址: http://www.t50rtu.com

4.2 PLC 编程软件开发环境

PLC 的用户编程开发环境是 PLC 编程软件, PLC 编程软件可以开发所有型号的无线 PLC 产品, PLC 编程软件支持 C 语言、梯形图和 STL 编程。PLC 编程软件更多内容详见《PLC 编程软件开发环境使用手册》。

> 新建工程向导

▶ 型号选择



4.3 梯形图/STL 编程

无线 PLC 的梯形图/STL 编程风格、指令体系和语法遵循西门子公司的 PLC 开发环境 STEP-7 软件,只是在原西门子 PLC 的指令上,添加有关无线通信的指令盒/命令和远程测控相关的指令盒/命令(和 SM 寄存器)。

梯形图/STL 更多内容详见《无线 PLC 用户编程手册-梯形图》。

4.3.1 主界面

4.3.2 编程资源

程序空间(ROM):5000 byte

跳变沿(EU/EP):256个

for 语句: 61 个

SM 寄存器: 180 个

V 寄存器: 3000byte

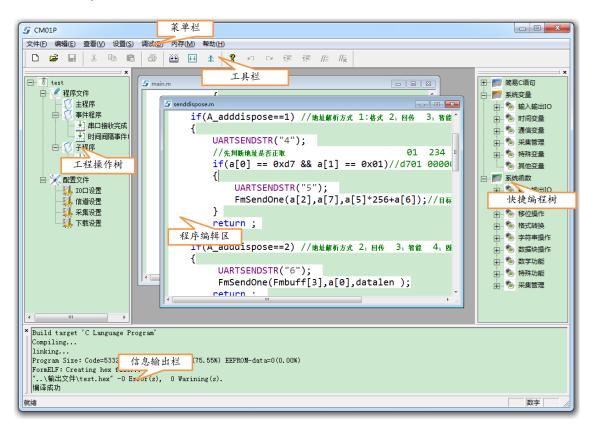
计数器: 32

高速计数器: 8

顺控继电器: 32

定时器: 64个

定时器类型	用亳秒 (ms) 表	用秒 (s) 表示的	定时器号
	示的分辨率	最大值	
	1ms	32.767s	ТО
TONR	10ms	327.67s	T1 T4
	100ms	327.67s	T5 T31
	1ms	32.767s	T32
TON, TOF	10ms	32.767s	T33 T36
	100ms	32.767s	T37 T63



4.4 C语言编程

无线 PLC 的 C 编程遵循标准 C 语言语法结构;用户程序框架类型 KEIL 软件的 C51 编程,分为主程序和事件中断程序两个大部分。主程序采用每个执行周期循环执行。事件中断程序是事件条件完成后再触发执行的,例如时间事件程序,是指设定的定时时间到了后,执行该时间的中断服务程序,信道事件程序是指对应的串口信道通道或者电台信道通道收到一包有效数据后(注意,是一包数据而不是 C51 的单个字节)后,执行该信道中断服务器程序。

C语言编程的更多内容详见《无线 PLC 用户编程手册-C语言》

4.4.1 主界面

4.4.2 编程资源

程序空间(ROM):最大 9000 byte

变量空间 (RAM): 最大 9000 byte

掉电存储变量(EEPROM):512byte

定时器: 10个, 其中 1-2 是 1ms;3-5 是 10ms;6-10 是 100ms

事件中断程序: 6个事件间隔时间 +3个信道事件(串口接收完成和 GPRS 信道接收完成和短信

信道接收完成)

网址: http://www.t50rtu.com

5. 通信

T20S 无线 PLC 有有线串口通信 GPRS 通信信道和短信通信信道。当 T20S 收到串口数据、GPRS 或短信数据包后,会将数据保存至指定的变量/寄存器空间的位置上,然后通过信道事件中断或者标志(变量/SM 寄存器)通知您的程序。您可以使用 T20S 提供的信道发送函数发送任何串口数据内容、GPRS 数据内容和短信数据内容。

有关串口通信的编程使用详见无线 PLC 的编程内容见《无线 PLC 用户编程手册-C 语言》和《无线 PLC 用户编程手册-梯形图》的"串口通信"章节;有关 GPRS 和短信信道通信的变量使用详见《T20S 无线 PLC 信道用户编程手册》。

下文仅仅描述 T20S 无线 PLC 的串口通信、GPRS 通信和短信通信的基本情况。

5.1 串口通信

5.1.1 收发数据

▶ 接收数据

当无线 PLC 的串口收到数据时,将收到的数据先放着接收缓存区中(此时并不通知用户收到数据了),如果后面还有数据,会将这些数据依次按照先后顺序存放在这个缓存区中,当接收超过 3.5 的字节时间还没有数据时,就认为一包数据接收完毕,即包结束的判断标准是 3.5 个字节无数据传输。传输一包数据至少要求传输数据之前和之后有 3.5 个字节的空闲时间(没有数据传输),如下图所示:

如果有一个中断服务程序连接到接收信息完成事件上,串口接收到一包数据时,PLC 会产生一个信道事件中断。您可以不使用中断,通过监视 UartRxFlag 变量(C语言)或者 SM33.0 寄存器(梯形图/STL)来接收信息。当接收到一包串口数据时,这一标志位置位。

▶ 发送数据

您可以通过任意发送数据指令来发送一包串口数据,串口发送数据有中断式和非中断式两种。

串口中断式发送数据指令的执行和发送过程是不同步的。采用中断的方式发送串口数据时,执行 中断式发送数据指令后,不等到数据全部发送完成,就认为这条语句已经执行完成,继续执行这条语

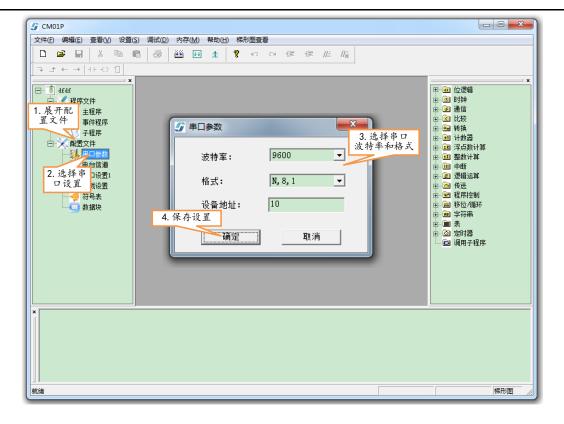
句的下一条语句。

非中断式语句的执行和发送过程是同步的。语句执行和发送过程同步是指在执行发送串口数据的程序语句时,远程通开始发送串口数据,直到数据发送完成后,这条语句才执行完成,然后再执行下一条语句。

下表为无线 PLC 的串口信道发送的相关函数/指令盒:

发送名称	C语言函数	梯形图/STL指令盒	说明
串口中断式发送字符串	UartIsrSendStr	XMTS -EN ENO- -DATA -PORT	支持中文字符(Unicode,GB 和 UTF)
串口中断式发送任意数据块	UartIsrSendBuff	XMTM - EN ENO LEN - DATA - PORT	最大 5000byte
串口非中断发送字符串	UartSendStr	XMTSF -EN ENO- -DATA -PORT	支持中文字符(Unicode,GB 和 UTF)
串口非中断式发送任意数据块	UartSendBuff	XMTMF -EN ENO - -LEN -DATA -PORT	最大 5000byte

5.1.2 参数及设置


无线 PLC 串口参数有两个: 串口波特率和串口格式。

串口波特率有 1200,、2400、4800、9600、19200、38400、57600 和 115200bp/s 可选,默认采用 115200bp/s 串口速率。

串口格式有 N-8-1、N-8-2、O-8-1、O-8-2、E-8-1 和 E-8-2 可选, 默认采用 N-8-1 串口格式。

串口参数的设置可以在您的程序中通过函数/指令盒进行设置,也可以通过 PLC 编程软件提供的串口参数设置界面完成。操作过程:工程树 > 配置文件 > 主串口信道设置,弹出如下的设置界面:

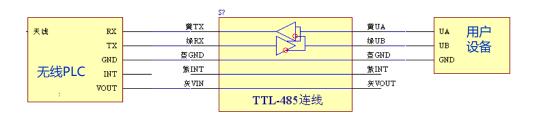
5.1.3 串口电平转换

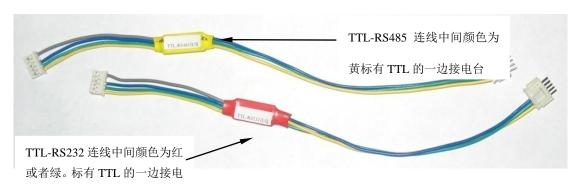
无线 PLC 可以与设备电平接口是 TTL、RS-232、RS-485 串口电平或 RJ-45 网口接口的用户设备 进行连接通信,本 PLC 自身输出 TTL 的串口电平,产品附件中的转换线或者转换头可将本 PLC 输出 的电平转换至您需要的接口方式。

▶ 连接 TTL 接口设备

当与无线 PLC 连接通信设备的电平为 TTL 电平时。采用直连方式,连接示意图如下图所示:

▶ 连接 RS-232 接口设备


当与无线 PLC 连接通信设备的电平为 RS-232 电平时。采用"TTL-232 连线"进行连接(有关"TTL-232 连线"见下文□ **连接 RS-485 接口设备**),连接示意图如下图所示:



▶ 连接 RS-485 接口设备

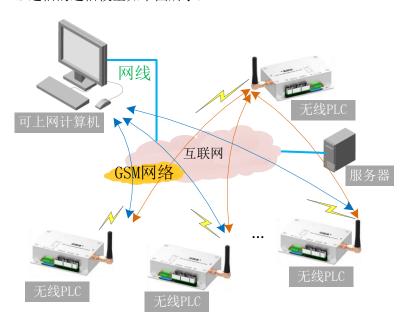
当与无线 PLC 连接通信设备的电平为 RS-485 电平时。采用"TTL-485 连线"进行连接,连接示意图如下图所示:

上图中的 TTL-232 连线和 TTL-485 连线是无线 PLC 的一个附件,其作用是将 TTL 电平转换成上位机所需的电平。连接时请注意不同定义的线用不同的颜色表示。TTL 端接电台,另一端接上位机。外观图见下图。电台与上位机连接好后即可向使用串口那样使用无线电台。


▶ 连接 RJ-45 网口接口设备

当与无线 PLC 连接通信设备的接口为 RJ-45 网口接口时。采用"CN10 网口转换头"进行连接,CN10 网口转接头是无线 PLC 的一个附件产品,使用时需要对 CN10 网口转接头进行参数设置(IP 地址、端口和 TCP/UDP 工作模式等),有关 CN10 网口转换头的使用说明见《CN10 网口转换头用户手册》,T10L 与 RJ-45 网口接口设备的连接示意图如下图所示:

CN10 网口转接头如下图所示: CN10 一头为标准的 RJ-45 母头,另外一头为完全兼容本 PLC 串口通信接座的接头。


5.2 GPRS 通信

T20S 无线 PLC 内置一个 GPRS 信道。T20SGPRS 信道通信时,采用分组分地址通信,通信间的 T20S 必须要在同一个组内,数据方的目标方必须是自己的信道地址。

有关 T20S 的 GPRS 信道通信的编程使用详见《T20S 无线 PLC 信道用户编程手册》。下文仅仅描述 T20S 无线 PLC 的 GPRS 通信的基本情况,帮助您建立信道概念。

5.2.1 通信模型

T20S 无线 PLC 可通过 GPRS 网络接入到互联网中,可以实现任何一台可上网计算机与 T20S 无线 PLC 直接通信(如下图蓝色箭头指示),当然 T20S 之间也可以通过 GPRS 网络相互通信(如下图红色箭头指示)。GPRS 通信的通信模型如下图所示:

由于 T20S 是通过登录 GSM 网络获得的 IP,而 GSM 网络给 T20S 分配的 IP 是动态的不确定的,因此导致 T20S 之间或者 T20S 与计算机之间无法直接通信。为解决这个问题,我们提供一个数据交换服务器,服务器的 IP 是不变的,T20S 上网后,首先去登录服务器,服务器会记录每次 T20S 登录服务器时的 IP 和站点地址,当 T20S 发送数据时,将需要发送给数据交换服务器,服务器会查询到目标端 T20S 的 IP 等信息,然后将数据内容发送给这个目标 T20S。服务器可以自建,也可以使用公共服务器完成(出厂默认,采用公共服务器,用户不用关心服务器的相关内容)。

5.2.2 收发数据

> 发送数据

您可以通过任意发送数据指令来发送一包 GPRS 信道数据,发送 GPRS 数据时,需要您指明发送数据的目标端地址(GPRS 身份地址),目标端的 GPRS 信道收到数据后,进行接收处理。

下表为 T20S 无线 PLC 的发送的相关函数/指令盒:

发送名称	C语言函数	梯形图/STL 指令盒	说明
GPRS 信道发送数据块带目标	GprsSendBuff	GPT_BUF - EN ENO DESID OUT DATA - LEN	支持中文字符(Unicode,GB 和 UTF)
GPRS 信道发送数据块目标为 回传地址	GprsSendData	GPT_DAT EN ENO — DATA OUT — LEN	最大 1000byte
GPRS 信道初始化	GprsRxinit	GPINI EN ENO BUFF LEN BUFF2 LEN2	

▶ 接收数据

当 T20S 无线 PLC 的 GPRS 信道收到自己数据时,将收到的数据放在指定的 GPRS 信道接收缓存区中,将长度更新到指定的变量/寄存器上。

有一个中断服务程序连接到 GPRS 信道接收信息完成事件上,接收到一包自己的 GPRS 信道数据时,T20S 会产生一个信道事件中断。您也可以不使用中断,通过监视 GprsRxFlag 变量(C语言)或者SM33.1 寄存器(梯形图/STL)来接收信息。当接收到一包 GPRS 数据时,这一标志位置位。

5.2.3 参数及设置

T20S 的 GPRS 信道之间的通信是通过服务器来协助完成的,因此 GPRS 信道必须要填写合适的服务器的信息。

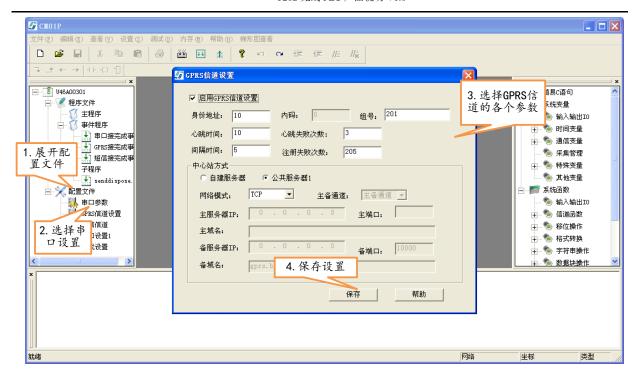
GPRS 信道的参数有"身份地址"、"心跳时间"、"心跳失败次数"、"注册失败"、"注册间隔时间" 和组建服务器的方式。

31

- 身份地址: GPRS 信道组成的网络中每个通信点都要进行地址的编号。T20S 的站点编号的长度为两个字节。为了便于用户(系统集成商)对工程的管理,将两字节 16 位的地址分为两部分,第一部分为工程号、第二部分为工程内的站点号。工程号占用 4 位、站点号占用 12 位。每个用户可管理 16 个工程。每个工程内可以有 1024 个站点。用户可处理的站点共有65536 站点。通常每个工程的主站的编号为 000H。分站从 001H 开始向下编号。若工程的号码为 3H,则这个工程的分站的地址为 3000H、3001H、3002H······。编号输入的方法是文本框输入,输入时采用十进制输入,最大数为 1024。如果工程中分站数大于 1024 个,可将两个工程号合并在一个工程中使用。
- 心跳时间: GPRS 信道的实时在线是建立在运营商的规定的时间内有一个最小的数据流量的基础上的,这个规定的时间不同的地区不同的运营商以及 GSM 网络当时的繁忙程度均有不同。所谓的心跳是指在心跳的时间间隔内如果上位机无数据收发。T20S 为了保持实时在线而发送的两个字节的心跳数据。心跳时间过快会使通信费用略有增加,过短会使模块有时不在线造成通信失败。一般的心跳时间设置在 3—5 分钟。省缺的设置是 5 分钟。如果一个月内无任何数据通信(此时是心跳数据量的最大值)保持实时在线的心跳数据量约为: 300K。

心跳失败次数: 当发送心跳几次后,服务器还没有响应就认为通信失败,需要重新启动,一般建议 3 次。

注册识别次数: T20S 向服务器注册时,最大注册的次数,如果超过这个次数还没有注册成功,就需要重新启动,一般建议 5 次。


注册间隔时间: T20S 向服务器注册时,注册失败后会再次发生注册包,它们之间的间隔时间就是注册间隔时间,一般建议为 10 秒。

组建服务器: T20S 支持自建服务器和"北京捷麦通信"服务器,模块默认是"北京捷麦通信"服务器,如果用户想自建服务器,则正确填写自建服务器的 IP、端口、域名和切换模式等信息,具体的填写方法请查阅《自建服务器操作说明》。

GPRS 信道参数的设置可以在您的程序中通过函数/指令盒进行设置,也可以通过 CM03P 软件提供的 GPRS 参数设置界面完成。操作过程:工程树 > 配置文件 > GPRS 信道设置,弹出如下的设置界面:

T20S 的 GPRS 信道之间的通信是通过服务器来协助完成的,因此 GPRS 信道必须要填写合适的服务器的信息。

5.3 短信通信

T20S 无线 PLC 内置一个短信信道。

T20S 无线 PLC 的短信信道为标准手机的短信, T20S 之间可以采用短信的方式之间通信, T20S 与手机也可以通过短信直接通信。

5.3.1 收发数据

▶ 发送数据

您可以通过任意发送数据指令来发送一包短信信道数据,短信信道属于点对点单一发送方式,需要您指明发送短信的目标端地址(手机号码)。

下表为 T20S 无线 PLC 的发送的相关函数/指令盒:

发送名称	C语言函数	梯形图/STL 指令盒	说明
短信信道发送字符串	SmgSendStr	SMT_STR -EN ENOSTR OUTPHONE	支持中文字符(Unicode,GB 和 UTF)
短信信道发送数据块	SmgSendBuff	SMT_BUF - EN ENO DATA OUT LEN - PHONE	最大 5000byte
短信信道初始化	SmgRxinit	SMINI - EN ENO - - BUFF - LEN	

▶ 接收数据

当 T20S 无线 PLC 的 GPRS 信道收到自己数据时,将收到的数据放在指定的 GPRS 信道接收缓存区中,将长度更新到指定的变量/寄存器上。

有一个中断服务程序连接到 GPRS 信道接收信息完成事件上,接收到一包自己的短信信道数据时, T20S 会产生一个信道事件中断。您也可以不使用中断,通过监视 SmgRxFlag 变量(C语言)或者 SM33.2 寄存器(梯形图/STL)来接收信息。当接收到一包 GPRS 数据时,这一标志位置位。

34

5.3.2 参数及设置

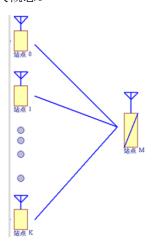
短信信道需要设置短信的数据格式。

八位:表示数据传输采用 8 位方式的传输,这种格式适用于远程通与远程通(或短信模块)之间 收发二进制数据和远程通对手机收发汉字或汉字和字符混合的数据,一条普通短信(非长短信)最大可以发送 140 个字节或者 70 个汉字(在远程通中,短信的中文编码格式为 unicode 码)。

<u>七位</u>:表示数据传输采用 7 位方式的传输,这种格式适用于与手机以纯字符的形式发送数据(如在一个纯英语的环境),采用这种模式,一条普通短信(非长短信)最大可以发送 160 个字节(比 8 位传输多出 20 个字节)。

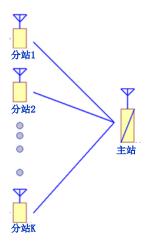
备注: 有关"长短信"的资料请搜索网络。

6. 组建主从测控网络


6.1 主从网的基本概念与架构

远程测控系统中分布着许多数据采集和控制的站点。采集和控制数据要不断的在相关的站点间传送。数据的发起站点称为源站点,数据终止站点称为目的站点。通信的目的是在源站点和目的站点间传送采集数据和控制命令。在以后的描述中我们将这个通信过程统称为数据采集或交换数据。

35


一个有代表性的远程无线测控系统的数据采集关系具有树形的拓扑结构。通过下面的例子来说明 在无线测控系统中各站点间的关系和相关概念。

在这个例子中:站点 0 ~站点 K 要与站点 M 交换数据。站点 M 与站点 0 ~站点 K 构成了一个点对多点的数据采集系统。

在树形结构中如果某个站点与若干个下层站点交换数据则这个站点就叫主站。与这个主站交换数据的下层站点叫分站。如果把"点对多点"的点换成站点的话,应该描述成"主站对多分站"。

在这个例子中:站点0~站点K均要与站点M交换数据,所以站点M是站点0~站点K的主站。站点0~站点K是站点M的分站。因此,替换以后的主从网的系统架构图如下所示:

无线 PLC 专注于远程测控,可充当测控网络中的从站,也可以充当主站,还可以两种方式同时运行(即当从站又当主站)。

无线 PLC 充当从站模式时,主站可以通过 MODBUS_RTU 协议和 JammyBus 协议采集无线 PLC 的数据:

无线 PLC 充当主站模式时,无线 PLC 可以采集支持 MODBUS_RTU 协议或 JammyBus 协议的设备从站。

36

有关无线 PLC 的 MODBUS_RTU 协议内容详见《0089_JM_MOD 协议说明》,有 JammyBus 协议 内容详见《0056_JMBUS 无线测控系统通信协议》。下文仅仅描述无线 PLC 的组建主从测控网络的基本情况。

6.2 主站的构成

主站可以由电脑、无线 PLC 或者您的用户主站设备组成。

6.2.1 计算机做主站

计算机做主站时, 主从测控系统的网络组成示意图如下所示:

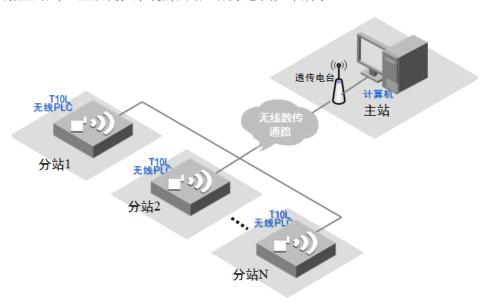


图 6-1 计算机做主站网络组成示意图

上图中,由于主站计算机不具备 430M 无线数传电台通信功能,因此使用 "透传电台"模块做信道扩展,将串口信道转换成无线电台信道,当然您可以使用 T10L 无线 PLC 编程实现"透传电台"模块的功能,有关如果将 T10L 实现"透传电台"功能的编程见《T10L 电台信道编程手册》的附录"编程实例: 透传电台"章节。

6.2.2 用户主站设备做主站

您可以用您的主站设备做主站,例如单片机加外围构成的主站产品等。用户主站设备做主站时, 主从测控系统的网络组成示意图如下所示:

图 6-2 用户主站设备做主站网络组成示意图

用户主站设备做主站的网络组成与计算机做主站类似,同样,由于用户主站设备不具备 430M 无 线数传电台通信功能,因此使用 "透传电台"模块做信道扩展,也可以使用 T10L 无线 PLC 编程实现"透传电台"模块的功能。

6.2.3 PLC 做主站

无线 PLC 做主从测控网络的主站时,由于其内部集成了 JM 采集管理模块功能和无线信道,因此在不需要编程的情况下,只需要在 PLC 编程软件界面中设置需要采集的分站个数、采集分站的协议、采集的变量类型、采集周期以及采集到的变量内容映射在 T10L 自身变量/寄存器的位置。

有关无线 PLC 做主站的更多相关内容见《无线 PLC 主站采集管理使用手册》。本文仅仅介绍 PLC 做主站的基本情况。

网络组成示意图

PLC 做主从测控网络的主站时,分站设备或者分站 PLC 做分节点。主站 PLC 会定期周期性地向网络下的各个分站进行通信和数据采集操作,网络系统组成示意图如下所示:

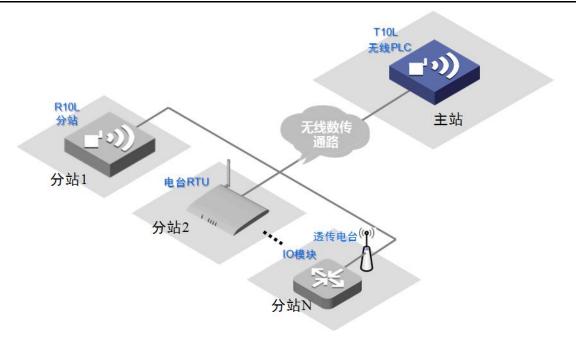


图 6-3T10L 做主站网络组成示意图

在上图所示的主从测控网络中,工作在主站模式(上图蓝色标识)的 T10L 通过无线数传通信,可以采集工作在分站模式的 T10L 无线 PLC,也可以采集 R10L 电台 RTU 模块,当然还可以采集通过"透传电台"连接的任何串口输入输出 IO 模块。

➢ 分站状态映射

PLC 提供了主站采集管理模式,当用户开启了主站采集管理功能后,PLC 会定期(采集周期)按照设定的有线串口或无线数传电台信道去采集自身管理的分站输入输出 IO 的状态数据,然后将这些分站的数据映射在与之对应的系统变量区中(用户给每个分站设定的映射变量区),用户程序直接访问这些系统变量,就可以获得各分站当前现场设备的状态信息。

当需要控制某一分站的 IO 输出状态时,只需要在调用远程控制分站的系统函数/指令盒,剩下的 事就由无线 PLC 全部完成。您不用关心它们是怎么组网的、是何时通过何种方式通信采集的等一系 列有关采集管理有关的问题。

当分站通信故障, PLC 自身对应的分站状态映射变量会被置位。

通过这样的映射处理后,相当于把分站的 IO 状态转变成自身的通道的 IO 一样使用,而这个功能的实现您不用做任何编程工作。分站 IO 状态映射后的等效结果如下图所示:

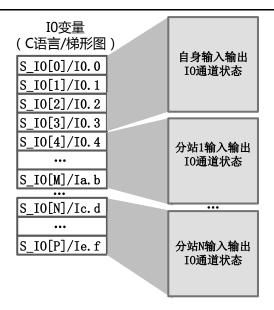


图 6-4 分站 IO 状态映射原理图

▶ 参数设置

在使用无线 PLC 的主站采集管理之前,需用对采集管理的参数进行设置,这些系统参数是通过 PLC 编程软件软件设置完成的。参数操作界面如下图所示:

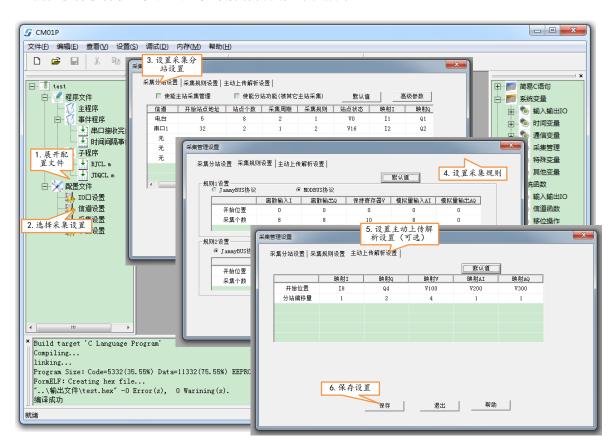


图 6-5 主站采集管理参数设置界面

6.3 PLC 做分站

无线 PLC 做主从测控网络的分站时,由于其内部集成了分站测控终端和无线信道,因此在不需要编程的情况下(设置一下分站地址),只需要将工程所需的传感器和执行机构等现场设备接入无线 PLC 就完成了对分站的构建。

PLC 做从站时,主站可以由电脑、PLC 或者您的主站产品组成。

▶ MODBUS 协议与变量关联关系

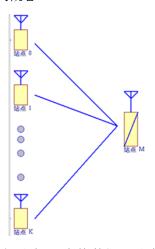
任何运行组态软件的电脑,用户编程设备等主站,都可通过 MODBU_RTU 协议采集或控制 PLC 的 IO 输入输出通道状态。

MODBUS 功能码与无线 PLC 的 IO 信息(变量/寄存器)相关的关联关系如下表所示:

存储区名称	意义	功能码	起始偏移地址	数据类型	组态王偏移地址
离散输入存储区	读离散输入 S_IO[]/ Ix.x	2 (02H)	0 (0000H)	位(1bit)	1xxxxx
	读离散输 S_OUT[] / Qx.x	1 (01H)	0 (0000H)	位(1bit)	0xxxxx
离散输出存储区 S_OUT[]/Qx.x	写单个离散输出	5 (05H)	0 (0000H)	位(1bit)	0xxxxx 例如 000001
	写多个离散输出	15 (0FH)	0 (0000H)	位(1bit)	
字节输出存储区 S_VB[]/Vxx	读多个字节输出存储区	3 (03H)	10000 2710H)	字(16bit)	31xxxx 例如 310002 表示 S_VB[2]
	写单个字节输出存储区	6 (06H)	10000 2710H)	字(16bit)	
	写多个字节输出存储区	16 (10H)	10000 2710H)	字(16bit)	或 VB2
整数输入存储区 S_CUT[]/HCx	读整数输入存储区	4 (04H)	0 (0000H)	字节(8bit)	30xxxx 例如: 300001
实数输入存储区 S_VB[]/Vxx	读实数输入存储区	4 (04H)	30000 7530H)	双字(32bit)	33xxxx 字序 HV1/2/3/4

上表中 S_IO[]表示 C 语言编程中的开关量输入寄存器,S_IO[0]表示开关量通道 0, S_IO[1]表示 开关量通道 1, 依次类推; Ix.x 表示梯形图编程中的开关量输入寄存器,I0.0 表示开关量通道 0, I0.1 表示开关量同 1, 依次类推。

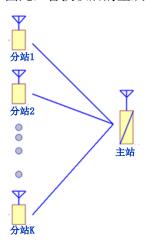
有关无线 PLC 做分站的更多内容见《无线 PLC 做分站功能使用手册》。



7. 组建主从测控网络

7.1 主从网的基本概念与架构

远程测控系统中分布着许多数据采集和控制的站点。采集和控制数据要不断的在相关的站点间传送。数据的发起站点称为源站点,数据终止站点称为目的站点。通信的目的是在源站点和目的站点间传送采集数据和控制命令。在以后的描述中我们将这个通信过程统称为数据采集或交换数据。


一个有代表性的远程无线测控系统的数据采集关系具有树形的拓扑结构。通过下面的例子来说明 在无线测控系统中各站点间的关系和相关概念。

在这个例子中:站点 0 ~站点 K 要与站点 M 交换数据。站点 M 与站点 0 ~站点 K 构成了一个点对多点的数据采集系统。

在树形结构中如果某个站点与若干个下层站点交换数据则这个站点就叫主站。与这个主站交换数据的下层站点叫分站。如果把"点对多点"的点换成站点的话,应该描述成"主站对多分站"。

在这个例子中:站点0~站点K均要与站点M交换数据,所以站点M是站点0~站点K的主站。站点0~站点K是站点M的分站。因此,替换以后的主从网的系统架构图如下所示:

42

无线 PLC 专注于远程测控,可充当测控网络中的从站,也可以充当主站,还可以两种方式同时运行(即当从站又当主站)。

无线 PLC 充当从站模式时,主站可以通过 MODBUS_RTU 协议和 JammyBus 协议采集无线 PLC 的数据:

无线 PLC 充当主站模式时,无线 PLC 可以采集支持 MODBUS_RTU 协议或 JammyBus 协议的设备从站。

有关无线 PLC 的 MODBUS_RTU 协议内容详见《0089_JM_MOD 协议说明》,有 JammyBus 协议内容详见《0056_JMBUS 无线测控系统通信协议》。下文仅仅描述无线 PLC 的组建主从测控网络的基本情况。

7.2 主站的构成

主站可以由电脑、无线 PLC 或者您的用户主站设备组成。

7.2.1 计算机做主站

计算机做主站时,主从测控系统的网络组成示意图如下所示:

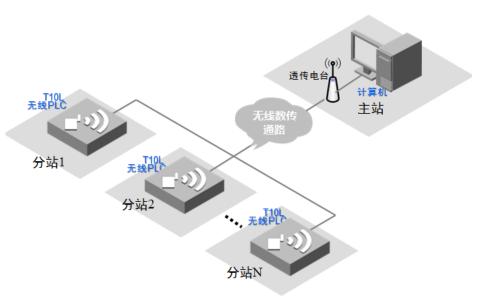


图 7-1 计算机做主站网络组成示意图

上图中,由于主站计算机不具备 430M 无线数传电台通信功能,因此使用 "透传电台"模块做信道扩展,将串口信道转换成无线电台信道,当然您可以使用 T10L 无线 PLC 编程实现"透传电台"模块的功能,有关如果将 T10L 实现"透传电台"功能的编程见《T10L 电台信道编程手册》的附录"编程实例:透传电台"章节。

43

7.2.2 用户主站设备做主站

您可以用您的主站设备做主站,例如单片机加外围构成的主站产品等。用户主站设备做主站时, 主从测控系统的网络组成示意图如下所示:

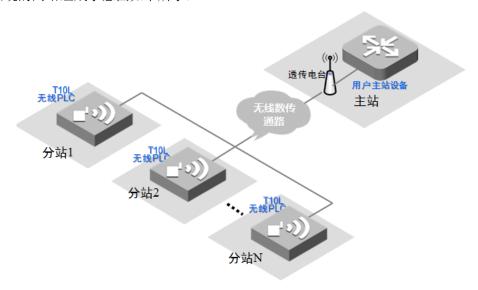


图 7-2 用户主站设备做主站网络组成示意图

用户主站设备做主站的网络组成与计算机做主站类似,同样,由于用户主站设备不具备 430M 无线数传电台通信功能,因此使用 "透传电台"模块做信道扩展,也可以使用 T10L 无线 PLC 编程实现"透传电台"模块的功能。

7.2.3 PLC 做主站

无线 PLC 做主从测控网络的主站时,由于其内部集成了 JM 采集管理模块功能和无线信道,因此在不需要编程的情况下,只需要在 PLC 编程软件界面中设置需要采集的分站个数、采集分站的协议、采集的变量类型、采集周期以及采集到的变量内容映射在 T10L 自身变量/寄存器的位置。

有关无线 PLC 做主站的更多相关内容见《无线 PLC 主站采集管理使用手册》。本文仅仅介绍 PLC 做主站的基本情况。

网络组成示意图

PLC 做主从测控网络的主站时,分站设备或者分站 PLC 做分节点。主站 PLC 会定期周期性地向网络下的各个分站进行通信和数据采集操作,网络系统组成示意图如下所示:

44

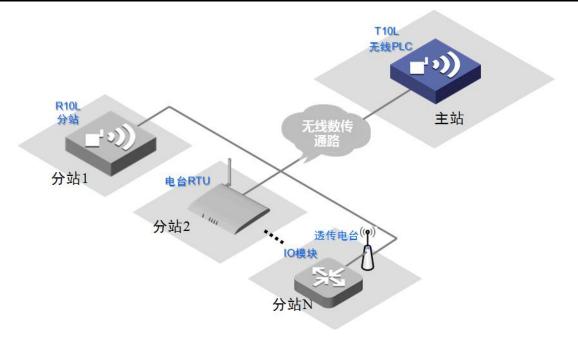


图 7-3T10L 做主站网络组成示意图

在上图所示的主从测控网络中,工作在主站模式(上图蓝色标识)的 T10L 通过无线数传通信,可以采集工作在分站模式的 T10L 无线 PLC,也可以采集 R10L 电台 RTU 模块,当然还可以采集通过"透传电台"连接的任何串口输入输出 IO 模块。

➢ 分站状态映射

PLC 提供了主站采集管理模式,当用户开启了主站采集管理功能后,PLC 会定期(采集周期)按照设定的有线串口或无线数传电台信道去采集自身管理的分站输入输出 IO 的状态数据,然后将这些分站的数据映射在与之对应的系统变量区中(用户给每个分站设定的映射变量区),用户程序直接访问这些系统变量,就可以获得各分站当前现场设备的状态信息。

当需要控制某一分站的 IO 输出状态时,只需要在调用远程控制分站的系统函数/指令盒,剩下的 事就由无线 PLC 全部完成。您不用关心它们是怎么组网的、是何时通过何种方式通信采集的等一系 列有关采集管理有关的问题。

当分站通信故障, PLC 自身对应的分站状态映射变量会被置位。

通过这样的映射处理后,相当于把分站的 IO 状态转变成自身的通道的 IO 一样使用,而这个功能的实现您不用做任何编程工作。分站 IO 状态映射后的等效结果如下图所示:

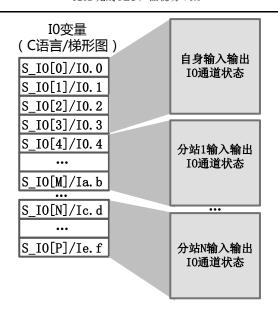


图 7-4 分站 IO 状态映射原理图

> 参数设置

在使用无线 PLC 的主站采集管理之前,需用对采集管理的参数进行设置,这些系统参数是通过 PLC 编程软件软件设置完成的。参数操作界面如下图所示:

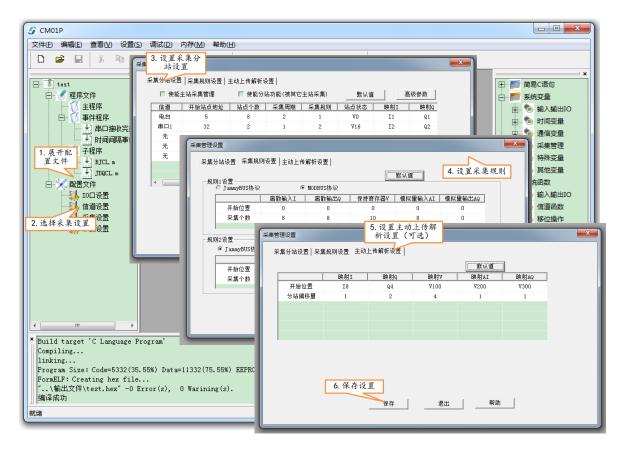


图 7-5 主站采集管理参数设置界面

7.3 PLC 做分站

无线 PLC 做主从测控网络的分站时,由于其内部集成了分站测控终端和无线信道,因此在不需要编程的情况下(设置一下分站地址),只需要将工程所需的传感器和执行机构等现场设备接入无线 PLC 就完成了对分站的构建。

PLC 做从站时,主站可以由电脑、PLC 或者您的主站产品组成。

▶ MODBUS 协议与变量关联关系

任何运行组态软件的电脑,用户编程设备等主站,都可通过 MODBU_RTU 协议采集或控制 PLC 的 IO 输入输出通道状态。

MODBUS 功能码与无线 PLC 的 IO 信息(变量/寄存器)相关的关联关系如下表所示:

存储区名称	意义	功能码	起始偏移地址	数据类型	组态王偏移地址
离散输入存储区	读离散输入 S_IO[]/ Ix.x	2 (02H)	0 (0000H)	位(1bit)	1xxxxx
	读离散输 S_OUT[] / Qx.x	1 (01H)	0 (0000H)	位(1bit)	0xxxxx
离散输出存储区 S_OUT[]/Qx.x	写单个离散输出	5 (05H)	0 (0000H)	位(1bit)	0xxxxx 例如 000001
	写多个离散输出	15 (0FH)	0 (0000H)	位(1bit)	
字节输出存储区 S_VB[]/Vxx	读多个字节输出存储区	3 (03H)	10000 2710H)	字(16bit)	31xxxx 例如 310002 表示 S_VB[2]
	写单个字节输出存储区	6 (06H)	10000 2710H)	字(16bit)	
	写多个字节输出存储区	16 (10H)	10000 2710H)	字(16bit)	或 VB2
整数输入存储区 S_CUT[]/HCx	读整数输入存储区	4 (04H)	0 (0000H)	字节(8bit)	30xxxx 例如: 300001
实数输入存储区 S_VB[]/Vxx	读实数输入存储区	4 (04H)	30000 7530H)	双字(32bit)	33xxxx 字序 HV1/2/3/4

上表中 S_IO[]表示 C 语言编程中的开关量输入寄存器, S_IO[0]表示开关量通道 0, S_IO[1]表示 开关量通道 1, 依次类推; Ix.x 表示梯形图编程中的开关量输入寄存器, I0.0 表示开关量通道 0, I0.1 表示开关量同 1, 依次类推。

有关无线 PLC 做分站的更多内容见《无线 PLC 做分站功能使用手册》。

7.4 工程实例

7.4.1 项目需求

山脚有一水泵泵站向不同山顶上的两口消防池分别供水(一个山顶一个消防池),泵站与消防池的距离大于 15KM,消防池的池深 5 米,当消防池的水位低于 0.8 米时,山脚的水泵就需要向消防池注水,当水位高于 4.5 米时,停止注水。

为了安全性考虑防止消防池水位溢出,泵站与消防池通信故障后,不向消防池注水;液位传感器 故障后,也不向消防池注水。

图 7-6 项目模型示意图

7.4.2 方案选择

整个系统采用 GPRS 信道通信,山脚泵站需要控制两路开关量输出信号,需要采集山顶消防池的液位数据并做逻辑处理,因此采用 T20S 无线 PLC,让其工作在主站模式下。

山顶消防池需要 GPRS 信道通信,也需要采集 1 路 4-20mA 电流的水位信号,因此采用 T20S 无线 PLC,让其工作在从站模式下,由于山顶消防池没有逻辑处理,因此山顶 T20S 无线编程。

主站(山脚水泵泵站): T20S 无线 PLC(主站模式)+2台水泵

从站(山顶消防池): T20S 无线 PLC(主站模式) + 4-20mA 液位传感器

7.4.3 参数设置

▶ 分站设置

48

将分站 T20SGPRS 道设置在 201 组,身份地址设置成 1 和 2,身份地址与设备地址相同,第一路输入通道设置成 0-20mA 模拟量档位,如下图所示:

图 7-7 示例工程分站参数设置界面

▶ 主站设置

将主站 T20SGPRS 信道设置在 201 组,身份地址设置成 3 (或者其他),开启主站采集管理功能,如下图所示:(使用 MODBUS 协议,每隔 1 秒采集分站 1 和分站 2 的模拟量输入通道 0 的数据)



图 7-8 示例工程主站参数设置界面

映射关系:分站 1 通信(故障)状态为 V0(BIT7),分站 2 通信(故障)状态为 V2(BIT7);分站 1 和分站 2 的液位状态分别为 VD4 和 VD8。

7.4.4 程序设计

程序中可以将 4-20mA 的电流信号通过公式转换成实际的液位信号,也可以将需要开启和关闭水泵的液位信号转换成电流信号。为了程序的高效性,我们采用第二种将控制泵启停的液位信号转换成电流信号: 4.5 米液位转换成 19.5mA, 0.8 米液位转换成 6.56mA。

采集管理中通信信道状态有一个 16 位的变量表示,其中 BIT7 表示站点通信故障,当出现站点通信故障时,BIT7 位为 1,例如本例中,V0.7 代表这分站 1 的通信状态,V2.7 表示分站 2 的通信状态。

▶ 程序流程图

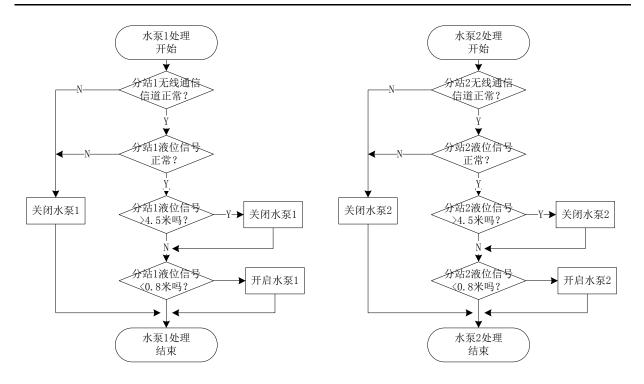


图 7-9 主站程序处理流程图

➤ C语言程序

```
示例:水泵控制主站程序-1
      该程序代码在主程序(main.c)文件中。
  float site1,site2;//用于转换成浮点数
  /****水泵1处理*****/
  if(s_vb[0]&0x80)//分站1通信故障
3.
4.
5.
      S_OUT[0]=0;//关闭水泵1
6.
7.
  else
8.
9.
      fMemcpy(site1,S_VB[4]);//将分站 1 的电流转换成浮点数
10
      if(site1 < 4.0)//电流小于 4mA,说明液位传感器坏了
11
         S_OUT[0]=0;//关闭水泵1
12
13
      }
14
      else
15
         if(site1 > 19.5)//电流大于 19.5mA (4.5 米),关闭泵
16
17
18
             S_OUT[0]=0;//关闭水泵1
19
20
         if(site1 < 6.56)// 电流大于 6.56mA (0.8 米),抽水
21
22
             S_OUT[0]=1;//开启水泵1
23
24
25.
   /****水泵2处理与水泵1基本一样,只是将变量名称更换*****/
26
27
```

图 7-10 主站程序 C 语言源码

▶ 梯形图程序

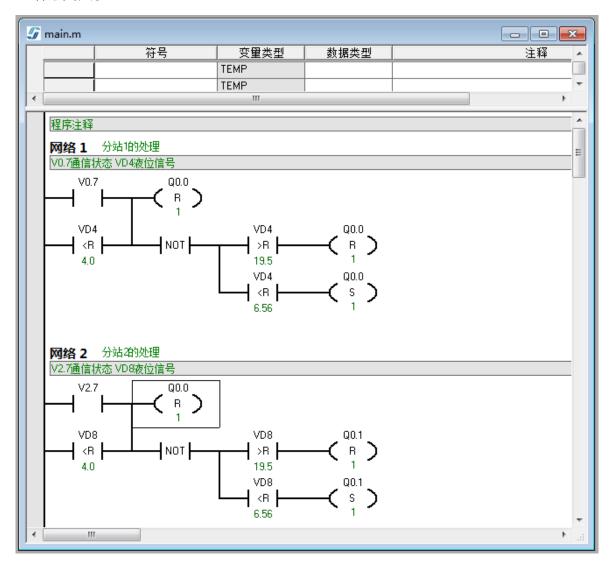


图 7-11 主站程序梯形图源码

8. 附录

8.1 相关文档及阅读指南

PLC 用户手册文档依据独立的功能拆分成多个文档,这些多个文档分成两大类: PLC 公共文档和具体 PLC 型号专有文档(xx 型无线 PLC 产品说明、xx 型 xx 信道编程使用手册)。如下表所示:

文档类型	文档名称	内容描述		
产品专有文档	T32U-PLC产品说明	描述这个产品的外观尺寸、性能指标、通信连接等产品信息		
	T32U-PLC 信道编程手册	描述本产品的独有信道相关编程的内容		
无线 PLC 公共文档	CM03P 开发环境使用手册	描述无线 PLC 开发环境 CM03P 的使用相关的内容		
	无线 PLC 用户编程手册-C 语言	描述无线 PLC 产品的 C 语言编程		
	无线 PLC 做分站功能使用手册	描述无线 PLC 做分站时的使用相关内容		
	0089_JM_MOD 协议说明	描述无线 PLC 产品的 MODBUS_RTU 协议		
	0056_JMBUS 无线测控系统通信协议	描述无线 PLC 产品的 MODBUS_RTU 协议		

阅读对象

如果您之前使用过我公司的 PLC 产品,熟悉无线 PLC 的开发环境、编程和过程,当您需要使用其他型号的无线 PLC 产品时,只需要查看《xx 型无线 PLC 产品说明》和《xx 型无线信道编程使用手册》即可。

如果您之前使用过西门子公司的PLC(例如S7-200等),当您需要使用我公司的无线PLC产品时,查看《CM03P开发环境使用手册》这个公共文档和这个产品专有的《T32U无线PLC产品说明》和《T32U-PLC信道编程手册》文档。

如果您之前没有接触过 PLC 产品,那么需求查看上述描述的所有文档。

8.2 版权声明

北京捷麦顺驰科技有限公司版权所有,并保留对本手册及本声明的最终解释权和修改权。

本手册的版权归北京捷麦顺驰科技有限公司所有。未得到北京捷麦顺驰科技有限公司的书面许可, 任何人不得以任何方式或形式对本手册内的任何部分进行复制、摘录、备份、修改、传播、翻译成其 它语言、将其全部或部分用于商业用途。

8.3 免责声明

本手册依据现有信息制作,其内容如有更改,恕不另行通知。

北京捷麦顺驰科技有限公司在编写该手册的时候已尽最大努力保证其内容准确可靠,但不对本手册中的遗漏、不准确或印刷错误导致的损失和损害承担责任。

我们会经常对手册中的数据进行检查,并在后续的版本中进行必要的更正。欢迎您提出宝贵意见。

8.4 技术支持

北京捷麦顺驰科技有限公司建立了以总部技术支持中心、区域技术支持中心和本地技术支持中心为主体的完善的服务体系,并提供电话热线服务。

您在产品使用过程中遇到问题时可随时与北京捷麦顺驰科技有限公司技术支持服务热线联系。

此外,您还可以通过北京捷麦顺驰科技有限公司网站及时了解最新产品动态,以及下载需要的技术文档。

北京捷麦顺驰科技有限公司

地址:北京市丰台区芳城园一区日月天地B座1505

邮编: 100017

电话: 010-58076471/2/3 传真: 010-58076471

E-mail: support@T50rtu.com

网站: http://www.T50rtu.com

8.5 变更历程

变更时间	版本	变更内容	其它
2017-06-20	V1.0	设立	作者: 黄勰
2017-07-14	V1.1	增加 GPRS 通信模型,去掉信道之间的比较	作者: 黄勰

网址: http://www.t50rtu.com